A Submodule-Based Zero Divisor Graph for Modules

Sakineh Babaei ${ }^{a}$, Shiroyeh Payrovi ${ }^{*, a}$, Esra Sengelen Sevim ${ }^{b}$
${ }^{a}$ Department of Mathematics, Imam Khomeini International University, Postal Code: 34149-1-6818, Qazvin, Iran.
${ }^{b}$ Department of Mathematics, Istanbul Bilgi University, Kazim Karabekir Cad. No: 2/13, 34060 Eyup-Istanbul, Turkey.
\[\begin{gathered} E-mail: sbabaei@edu.ikiu.ac.ir
E-mail: shpayrovi@sci.ikiu.ac.ir
E-mail: esra.sengelen@bilgi.edu.tr \end{gathered} \]

Abstract

Let R be a commutative ring with identity and M be an R module. The zero divisor graph of M is denoted by $\Gamma(M)$. In this study, we are going to generalize the zero divisor graph $\Gamma(M)$ to submodulebased zero divisor graph $\Gamma(M, N)$ by replacing elements whose product is zero with elements whose product is in some submodule N of M. The main objective of this paper is to study the interplay of the properties of submodule N and the properties of $\Gamma(M, N)$.

Keywords: Zero divisor graph, Submodule-based zero divisor graph, Semisimple module.

2000 Mathematics subject classification: 13A99, 05C75.

1. Introduction

Let R be a commutative ring with identity. The zero divisor graph of R, denoted $\Gamma(R)$, is an undirected graph whose vertices are the nonzero zero divisor of R with two distinct vertices x and y are adjacent by an edge if and only

[^0]if $x y=0$. The idea of a zero divisor graph of a commutative ring was introduced by Beck in [3] where he was mainly interested with colorings of rings. The definition above first is appeared in [2], which contains several fundamental results concerning $\Gamma(R)$. The zero-divisor graph of a commutative ring is further examined by Anderson, Levy and Shapiro, Mulay in [1, 9]. Also, the ideal-based zero divisor graph of R is defined by Redmond, in [12].

The zero divisor graph for modules over commutative rings has been defined by Behboodi in [4] as a generalization of zero divisor graph of rings. Let R be a commutative ring and M be an R-module, for $x \in M$, we denote the annihilator of the factor module $M / R x$ by I_{x}. An element $x \in M$ is called a zero divisor, if either $x=0$ or $I_{x} I_{y} M=0$ for some $y \neq 0$ with $I_{y} \subset R$. The set of zero divisors of M is denoted by $Z(M)$ and the associated graph to M with vertices in $Z^{*}(M)=Z(M) \backslash\{0\}$ is denoted by $\Gamma(M)$, such that two different vertices x and y are adjacent provided $I_{x} I_{y} M=0$.

In this paper, we introduce the submodule-based zero divisor graph that is a generalization of zero divisor graph for modules. Let R be a commutative ring, M be an R-module and N be a proper submodule of M. An element $x \in M$ is called zero divisor with respect to N, if either $x \in N$ or $I_{x} I_{y} M \subseteq N$ for some $y \in M \backslash N$ with $I_{y} \subset R$. We denote $Z(M, N)$ for the set of zero divisors of M with respect to N. Also, we denote the associated graph to M with vertices $Z^{*}(M, N)=Z(M, N) \backslash N$ by $\Gamma(M, N)$, and two different vertices x and y are adjacent provided $I_{x} I_{y} M \subseteq N$.

In the second section, we define a submodule-based zero divisor graph for a module and we study basic properties of this graph. In the third section, if M is a finitely generated semisimple R-module such that its homogenous components are simple and N is a submodule of M, we determine some relations between $\Gamma(M, N)$ and $\Gamma(M / N)$, where M / N is the quotient module of M, we show that the clique number and chromatic number of $\Gamma(M, N)$ are equal. Also, we determine some submodule of M such that $\Gamma(M, N)$ is an empty or a complete bipartite graph.

Let Γ be a (undirected) graph. We say that Γ is connected if there is a path between any two distinct vertices. For vertex x the number of graph edges which touch x is called the degree of x and is denoted by $\operatorname{deg}(x)$. For vertices x and y of Γ, we define $\mathrm{d}(x, y)$ to be the length of a shortest path between x and y, if there is no path, then $\mathrm{d}(x, y)=\infty$. The diameter of Γ is $\operatorname{diam}(\Gamma)=\sup \{\mathrm{d}(x, y) \mid x$ and y are vertices of $\Gamma\}$. The girth of Γ, denoted by $\operatorname{gr}(\Gamma)$, is the length of a shortest cycle in $\Gamma(\operatorname{gr}(\Gamma)=\infty$ if Γ contains no cycle $)$.

A graph Γ is complete if any two distinct vertices are adjacent. The complete graph with n vertices is denoted by K^{n} (we allow n to be an infinite cardinal). The clique number, $\omega(\Gamma)$, is the greatest integer $n>1$ such that $K^{n} \subseteq \Gamma$, and $\omega(\Gamma)=\infty$ if $K^{n} \subseteq \Gamma$ for all $n \geq 1$. A complete bipartite graph is a graph Γ which may be partitioned into two disjoint nonempty vertex sets V_{1} and V_{2}
such that two distinct vertices are adjacent if and only if they are in different vertex sets. If one of the vertex sets is a singleton, then we call that Γ is a star graph. We denote the complete bipartite graph by $K^{m, n}$, where $\left|V_{1}\right|=m$ and $\left|V_{2}\right|=n$ (again, we allow m and n to be infinite cardinals); so a star graph is $K^{1, n}$, for some $n \in \mathbb{N}$.

The chromatic number, $\chi(\Gamma)$, of a graph Γ is the minimum number of colors needed to color the vertices of Γ, so that no two adjacent vertices share the same color. A graph Γ is called planar if it can be drawn in such a way that no two edges intersect.

Throughout this study, R is a commutative ring with nonzero identity, M is a unitary R-module and N is a proper submodule of M. Given any subset S of M, the annihilator of S is denoted by ann $(S)=\{r \in R \mid r s=0$ for all $s \in S\}$ and the cardinal number of S is denoted by $|S|$.

2. Submodule-based Zero Divisor Graph

Recall that R is a commutative ring, M is an R-module and N is a proper submodule of M. For $x \in M$, we denote ann $(M / R x)$ by I_{x}.

Definition 2.1. Let M be an R-module and N be a proper submodule of M. An $x \in M$ is called a zero divisor with respect to N if $x \in N$ or $I_{x} I_{y} M \subseteq N$ for some $y \in M \backslash N$ with $I_{y} \subset R$.

We denote the set of zero divisors of M with respect to N by $Z(M, N)$ and $Z^{*}(M, N)=Z(M, N) \backslash N$. The submodule-based zero divisor graph of M with respect to $N, \Gamma(M, N)$, is an undirected graph with vertices $Z^{*}(M, N)$ such that distinct vertices x and y are adjacent if and only if $I_{x} I_{y} M \subseteq N$.

The following example shows that $Z(M / N)$ and $Z(M, N)$ are different from each other.

Example 2.2. Let $M=\mathbb{Z} \oplus \mathbb{Z}$ and $N=2 \mathbb{Z} \oplus 0$. Then $I_{(m, n)}=0$, for all $(m, n) \in \mathbb{Z} \oplus \mathbb{Z}$. But $I_{(m, n)+N}=2 n \mathbb{Z}$ whenever $m \in 2 \mathbb{Z}$ and $I_{(m, n)+N}=2 \mathbb{Z}$ whenever $m \notin 2 \mathbb{Z}$. Thus $(1,0),(1,1) \in Z^{*}(M, N)$ are adjacent in $\Gamma(M, N)$, but $(1,0)+N,(1,1)+N \notin Z^{*}(M / N)$.
Proposition 2.3. If $Z^{*}(M, N)=\emptyset$, then $\operatorname{ann}(\mathrm{M} / \mathrm{N})$ is a prime ideal of R.
Proof. Suppose that $\operatorname{ann}(M / N)$ is not prime. Then there are ideals I and J of R such that $I J M \subset N$ but $I M \nsubseteq N$ and $J M \nsubseteq N$. Let $x \in I M \backslash N$ and $y \in J M \backslash N$. Then $I_{x} J_{y} M \subseteq I J M \subseteq N$ and $I_{y} \subset R$. Thus $x \in Z^{*}(M, N)$, a contradiction. Hence, $\operatorname{ann}(M / N)$ is a prime ideal of R.

Lemma 2.4. Let $x, y \in Z^{*}(M, N)$. If $x-y$ is an edge in $\Gamma(M, N)$, then for each $0 \neq r \in R$, either $r y \in N$ or $x-r y$ is also an edge in $\Gamma(M, N)$.
Proof. Let $x, y \in Z^{*}(M, N)$ and $r \in R$. Assume that $x-y$ is an edge in $\Gamma(M, N)$ and $r y \notin N$. Then $I_{x} I_{y} M \subseteq N$. It is clear that $I_{r x} \subseteq I_{x}$. So that $I_{x} I_{r y} M \subseteq I_{x} I_{y} M \subseteq N$ and therefore, $x-r y$ is an edge in $\Gamma(M, N)$.

It is shown that the graphs are defined in [12] and [4], are connected with diameter less than or equal to three. Moreover, it shown that if those graphs contain a cycle, then they have the girth less than or equal to four. In the next theorems, we extend these results to a submodule-based zero divisor graph.
Theorem 2.5. $\Gamma(M, N)$ is a connected graph and $\operatorname{diam}(\Gamma(\mathrm{M}, \mathrm{N})) \leq 3$.
Proof. Let x and y be distinct vertices of $\Gamma(M, N)$. Then, there are $a, b \in$ $Z^{*}(M, N)$ with $I_{a} I_{x} M \subseteq N$ and $I_{b} I_{y} M \subseteq N$ (we allow $a, b \in\{x, y\}$). If $I_{a} I_{b} M \subseteq N$, then $x-a-b-y$ is a path, thus $\mathrm{d}(x, y) \leq 3$. If $I_{a} I_{b} M \nsubseteq N$, then $R a \cap R b \nsubseteq N$, and for every $d \in(R a \cap R b) \backslash N, x-d-y$ is a path of length 2 , $\mathrm{d}(x, y) \leq 2$, by Lemma 2.4. Hence, we conclude that $\operatorname{diam}(\Gamma(M, N)) \leq 3$.
Theorem 2.6. If $\Gamma(M, N)$ contains a cycle, then $\operatorname{gr}(\Gamma(\mathrm{M}, \mathrm{N})) \leq 4$.
Proof. We have $\operatorname{gr}(\Gamma(M, N)) \leq 7$, by Proposition 1.3.2 in [7] and Theorem 2.5. Assume that $x_{1}-x_{2}-\cdots-x_{7}-x_{1}$ is a cycle in $\Gamma(M, N)$. If $x_{1}=x_{4}$ then it is clear that $\operatorname{gr}(\Gamma(M, N)) \leq 3$. So, suppose that $x_{1} \neq x_{4}$. Then we have the following two cases:
Case 1. If x_{1} and x_{4} are adjacent in $\Gamma(M, N)$, then $x_{1}-x_{2}-x_{3}-x_{4}-x_{1}$ is a cycle and $\operatorname{gr}(\Gamma(M, N)) \leq 4$.
Case 2. Suppose that x_{1} and x_{4} are not adjacent in $\Gamma(M, N)$. Then $I_{x_{1}} I_{x_{4}} M \nsubseteq$ N and so there is a $z \in\left(R x_{1} \cap R x_{4}\right) \backslash N$. If $z=x_{1}$, then $z \neq x_{4}$ and $x_{3}-x_{4}-x_{5}-z-x_{3}$ is a cycle in $\Gamma(M, N)$, by Lemma 2.4. If $z \neq x_{1}$, then by Lemma 2.4, $x_{1}-x_{2}-z-x_{7}-x_{1}$ is a cycle and $\operatorname{gr}(\Gamma(M, N)) \leq 4$.

For cycles with length 5 or 6 , by using a similar argument as above, one can shows that $\operatorname{gr}(\Gamma(M, N)) \leq 4$.
Example 2.7. Assume that $M=\mathbb{Z}$ and p, q are two prime numbers. If $N=p \mathbb{Z}$, then $\Gamma(M, N)=\emptyset$. If $N=p q \mathbb{Z}$, then $\Gamma(M, N)$ is an infinite complete bipartite graph with vertex set $V_{1} \cup V_{2}$, where $V_{1}=p \mathbb{Z} \backslash p q \mathbb{Z}$ and $V_{2}=q \mathbb{Z} \backslash p q \mathbb{Z}$ and so $\operatorname{gr}(\Gamma(M, N))=4$.
Corollary 2.8. If N is a prime submodule of M, then $\operatorname{diam}(\Gamma(M, N)) \leq 2$ and $\operatorname{gr}(\Gamma(M, N))=3$, whenever it contains a cycle.

Proof. Let x, y be two distinct vertices which are not adjacent in $\Gamma(M, N)$. Thus there is an $a \in M \backslash N$ such that $I_{a} I_{x} M \subseteq N$. Since N is a prime submodule, then $I_{a} M \subseteq N$. Thus $I_{a} I_{y} M \subseteq N$, and then $x-a-y$ is a path in $\Gamma(M, N)$. Then $\operatorname{diam}(\Gamma(M, N)) \leq 2$.

Lemma 2.9. Let $|\Gamma(M, N)| \geq 3, \operatorname{gr}(\Gamma(M, N))=\infty$ and $x \in Z^{*}(M, N)$ with $\operatorname{deg}(x)>1$. Then $R x=\{0, x\}$ and $\operatorname{ann}(x)$ is a prime ideal of R.
Proof. First we show that $R x=\{0, x\}$. Let $u-x-v$ be a path in $\Gamma(M, N)$. Then $u-v$ is not an edge in $\Gamma(M, N)$ since $\operatorname{gr}(\Gamma(M, N))=\infty$. If $x \neq r x$ for some $r \in R$ and $r x \notin N$, then by Lemma 2.4, $r x-u-x-v-r x$ is a cycle in
$\Gamma(M, N)$, that is a contradiction. So, for every $r \in R$ either $r x=x$ or $r x \in N$. If there is an $r \in R$ such that $r x \in N$, then we have either $(1+r) x \in N$ or $(1+r) x=x$. These imply that $x \in N$ or $r x=0$. Therefore, we have shown that $R x=\{0, x\}$.
Let $a, b \in R$ and $a b x=0$. Then $b x=0$ or $b x=x$. Hence, $b x=0$ or $a x=0$. So, $\operatorname{ann}(x)$ is a prime ideal of R.

Theorem 2.10. If N is a nonzero submodule of M and $\operatorname{gr}(\Gamma(M, N))=\infty$, then $\Gamma(M, N)$ is a star graph.

Proof. Suppose that $\Gamma(M, N)$ is not a star graph. Then there is a path in $\Gamma(M, N)$ such as $u-x-y-v$. By Lemma 2.9, we have $R y=\{0, y\}$ and by assumption u and y are not adjacent, thus $I_{y} M \neq 0$. So that $I_{y} M=R y$. Also, $x-y-v$ is a path, thus $I_{v} I_{y} M \subseteq N$ and $I_{x} I_{y} M \subseteq N$. Hence, $I_{v} R y \subseteq N$ and $I_{x} R y \subseteq N$. On the other hand, for every nonzero $n \in N$, we have

$$
I_{v} I_{y+n} M \subseteq I_{v} R(y+n) \subseteq I_{v}(R y+N) \subseteq N
$$

and similarly $I_{x} I_{y+n} M \subseteq N$. So that $x-y-v-(y+n)-x$ is a cycle in $\Gamma(M, N)$, a contradiction. Therefore, $\Gamma(M, N)$ is a star graph.

Theorem 2.11. Let N be a nonzero submodule of $M,|\Gamma(M, N)| \geq 3$ and $\Gamma(M, N)$ is a star graph. Then the following statements are true:
(i) If x is the center vertex, then $I_{x}=\operatorname{ann}(M)$.
(ii) $\Gamma(M, N)$ is a subgraph of $\Gamma(M)$.

Proof. (i) By Lemma 2.9, we have $R x=\{0, x\}$. Thus either $I_{x} M=0$ or $I_{x} M=R x$. Assume that $I_{x} M=R x$. If y is a vertex of $\Gamma(M, N)$ such that $y \neq x$, then $\operatorname{deg}(y)=1$ and $I_{x} I_{y} M \subseteq N$. Thus $I_{y} R x \subseteq N$. Since $I_{x+n} I_{y} M \subseteq I_{y} R(x+n) \subseteq N$ for every nonzero element $n \in N$ it concludes that $y=x+n$. In this case, every other vertices of $\Gamma(M, N)$ are adjacent to y, a contradiction. Hence, $I_{x} M=0$ and $I_{x}=\operatorname{ann}(M)$.
(ii) It is obvious.

Theorem 2.12. If $|N| \geq 3$ and $\Gamma(M, N)$ is a complete bipartite graph which is not a star graph, then $I_{x}^{2} M \nsubseteq N$, for every $x \in Z^{*}(M, N)$.

Proof. Let $Z^{*}(M, N)=V_{1} \cup V_{2}$, where $V_{1} \cap V_{2}=\emptyset$. Suppose that $I_{x}^{2} M \subseteq N$ for some $x \in Z^{*}(M, N)$. Without loss of generality, we can assume that $x \in V_{1}$. By a similar argument with Lemma 2.9, either $R x=\{0, x\}$ or there is an $r \in R$ such that $x \neq r x$ and $r x \in N$. If $R x=\{0, x\}$, then $I_{x} M=R x$. Thus $I_{x} R x \subseteq N$. Now, for every $y \in V_{2}$ and $n \in N$ we get

$$
I_{y} I_{x+n} M \subseteq I_{y} R(x+n) \subseteq I_{y}(R x+N) \subseteq N
$$

and $I_{x} I_{x+n} M \subseteq N$. Then, $x+n \in V_{1} \cap V_{2}$, a contradiction. So, assume that $x \neq r x$ and $r x \in N$ for some $r \in R$. Since $I_{r x+x} \subseteq I_{x}$, then $I_{x} I_{r x+x} M \subseteq N$ and for all $y \in V_{2}, I_{y} I_{r x+x} M \subseteq N$. Thus $r x+x \in V_{1} \cap V_{2}$, a contradiction.

An R-module X is called a multiplication-like module if, for each nonzero submodule Y of $X, \operatorname{ann}(X) \subset \operatorname{ann}(X / Y)$. Multiplication-like module have been studied in $[8,13]$.

A vertex x of a connected graph G is a cut-point, if there are vertices u, v of G such that x is in every path from u to v and $x \neq u, x \neq v$. For a connected graph G, an edge E of G is defined to be a bridge if $G-\{E\}$ is disconnected, see [6].

Theorem 2.13. Let M be a multiplication-like module and N be a nonzero submodule of M. Then $\Gamma(M, N)$ has no cut-points.

Proof. Suppose that x is a cut-point of $\Gamma(M, N)$. Then there exist vertices $u, v \in M \backslash N$ such that x lies on every path from u to v. By Theorem 2.5, the shortest path from u to v has length 2 or 3 .
Case 1. Suppose that $u-x-v$ is a path of shortest length from u to v. Since x is a cut point x, u, v aren't in a cycle. By a similar argument to that of Lemma 2.9, we have $R x=\{0, x\}$. On the other hand, $I_{x} M \subseteq R x$ and M is a multiplicationlike module, so we have $I_{x} M=R x$. Hence $I_{u} R x \subseteq N$ and $I_{v} R x \subseteq N$. Also, for every nonzero $n \in N$, we have $I_{u} I_{x+n} M \subseteq I_{u}(R x+N) \subseteq N$ and $I_{v} I_{x+n} M \subseteq N$. Therefore, $u-(x+n)-v$ is a path from u to v, a contradiction.
Case 2. Suppose that $u-x-y-v$ is a path in $\Gamma(M, N)$. Then, we have $I_{x} M=$ $R x$ and for every nonzero $n \in N$, we have $I_{y} I_{x+n} M \subseteq N$ and $I_{u} I_{x+n} M \subseteq N$. Thus $u-(x+n)-y-v$ is a path from u to v, a contradiction.

Theorem 2.14. Let M be a multiplication-like module and N be a nonzero submodule of M. Then $\Gamma(M, N)$ has a bridge if and only if $\Gamma(M, N)$ is a graph on two vertices.

Proof. If $|\Gamma(M, N)|=3$, then $\Gamma(M, N)=K^{3}$, by Theorem 2.11, and it has no bridge. Assume that $|\Gamma(M, N)| \geq 4$ and $x-y$ is a bridge. Thus there is not a cycle containing $x-y$. Without loss of generality, we can assume that $\operatorname{deg}(x)>1$. Thus, there exists a vertex $z \neq y$ such that $z-x$ is an edge of $\Gamma(M, N)$. Then $R x=\{0, x\}$ and $I_{x} M=R x$. Hence, for every $n \in N$, $I_{z} I_{x+n} M \subseteq N$ and $I_{y} I_{x+n} M \subseteq N$, a contradiction. Therefore, $\Gamma(M, N)$ has not a bridge. The converse is clear.

3. Submodule-based Zero Divisor Graph of Semisimple Modules

A nonzero R-module X is called simple if its only submodules are (0) and X. An R-module X is called semisimple if it is a direct sum of simple modules. Also, X is called homogenous semisimple if it is a direct sum of isomorphic simple modules.

In this section, R is a commutative ring and M is a finitely generated semisimple R-module such that its homogenous components are simple and
N is a submodule of M. The following theorem has a crucial role in this section.

Theorem 3.1. Let $x, y \in M \backslash N$. Then x, y are adjacent in $\Gamma(M, N)$ if and only if $R x \cap R y \subseteq N$.

Proof. Let $M=\bigoplus_{i \in I} M_{i}$, where M_{i} 's are non-isomorphic simple submodules of M. By assumption N is a submodule of M, so there exists a subset A of I such that $M=N \oplus\left(\bigoplus_{i \in A} M_{i}\right)$ and so $\operatorname{ann}(M / N)=\operatorname{ann}\left(\bigoplus_{i \in A} M_{i}\right)=$ $\bigcap_{i \in A} \operatorname{ann}\left(M_{i}\right)$. Assume that $x, y \in M \backslash N$ are adjacent in $\Gamma(M, N)$ and $R x \cap$ $R y \nsubseteq N$. Thus there exists $\alpha \in I$ such that $M_{\alpha} \subseteq(R x \cap R y) \backslash N$. Also, there exist subsets $B \subset I$ and $C \subset I$ such that $M=R x \oplus\left(\bigoplus_{i \in B} M_{i}\right)$ and $M=R y \oplus\left(\bigoplus_{i \in C} M_{i}\right)$. Therefore, $I_{x}=\bigcap_{i \in B}$ ann $\left(M_{i}\right)$ and $I_{y}=\bigcap_{i \in C}$ ann $\left(\mathrm{M}_{\mathrm{i}}\right)$. Since $I_{x} I_{y} M \subseteq N$, we have $I_{x} I_{y} \subseteq \operatorname{ann}(M / N)$. For every $i, j \in I, \operatorname{ann}\left(M_{i}\right)$ and $\operatorname{ann}\left(M_{j}\right)$ are coprime, then

$$
\begin{aligned}
I_{x} I_{y}=\left[\bigcap_{i \in B} \operatorname{ann}\left(M_{i}\right)\right]\left[\bigcap_{i \in C} \operatorname{ann}\left(M_{i}\right)\right] & =\prod_{i \in B \cup C} \operatorname{ann}\left(M_{i}\right) \\
& \subseteq \bigcap_{i \in A} \operatorname{ann}\left(M_{i}\right) \subseteq \operatorname{ann}\left(M_{r}\right),
\end{aligned}
$$

for all $r \in A$. Thus for any $r \in A$ there exists $j_{r} \in B \cup C$ such that $\operatorname{ann}\left(M_{j_{r}}\right) \subseteq \operatorname{ann}\left(M_{r}\right)$. So that $\operatorname{ann}\left(M_{j_{r}}\right)=\operatorname{ann}\left(M_{r}\right)$ implies that $M_{j_{r}} \cong M_{r}$ and by hypothesis $M_{j_{r}}=M_{r}$. Hence,

$$
M_{\alpha} \subseteq \bigoplus_{i \in A} M_{i} \subseteq \bigoplus_{j \in B \cup C} M_{j}
$$

Thus there exists $\gamma \in B \cup C$ such that $M_{\alpha}=M_{\gamma}$, also

$$
M_{\alpha} \subseteq R x \cap R y=\left(\bigoplus_{i \in I \backslash B} M_{i}\right) \cap\left(\bigoplus_{i \in I \backslash C} M_{i}\right)
$$

Therefore, $\alpha \in I \backslash(B \cup C)$, a contradiction. The converse is obvious.
Corollary 3.2. Let $x, y \in M \backslash N$ be such that $x+N \neq y+N$. Then
(i) x and y are adjacent in $\Gamma(M, N)$ if and only if $x+N$ and $y+N$ are adjacent in $\Gamma(M / N)$.
(ii) if x and y are adjacent in $\Gamma(M, N)$, then all distinct elements of $x+N$ and $y+N$ are adjacent in $\Gamma(M, N)$.
Proof. (i) Let $M=\bigoplus_{i \in I} M_{i}$, where M_{i} 's are non-isomorphic simple submodules of M. Suppose that x and y are adjacent in $\Gamma(M, N), R x=\bigoplus_{i \in A} M_{i}$, $R y=\bigoplus_{i \in B} M_{i}$ and $N=\bigoplus_{i \in C} M_{i}$. Then $R x+N=\bigoplus_{i \in A \cup C} M_{i}$ and $R y+N=\bigoplus_{i \in B \cup C} M_{i}$. Thus,

$$
(R x+N) \cap(R y+N)=\bigoplus_{i \in(A \cup C) \cap(B \cup C)} M_{i}=\bigoplus_{i \in(A \cap B) \cup C} M_{i}=(R x \cap R y)+N
$$

By Theorem 3.1, we have $R x \cap R y \subseteq N$ hence,

$$
I_{x+N} I_{y+N} M \subseteq(R x+N) \cap(R y+N)=(R x \cap R y)+N=N
$$

Therefore, $x+N$ and $y+N$ are adjacent in $\Gamma(M / N)$. The converse is obvious.
(ii) Let $x, y \in Z^{*}(M, N)$ be adjacent in $\Gamma(M, N)$. Then $R x \cap R y \subseteq N$ by Theorem 3.1. So for every $n, n^{\prime} \in N$ we have

$$
I_{x+n} I_{y+n^{\prime}} M \subseteq R(x+n) \cap R\left(y+n^{\prime}\right) \subseteq(R x+N) \cap(R y+N)=N
$$

Hence, $x+n$ and $y+n^{\prime}$ are adjacent in $\Gamma(M, N)$.
In the following theorem, we prove that the clique number of graphs $\Gamma(M, N)$ and $\Gamma(M / N)$ are equal.

Theorem 3.3. If N is a nonzero submodule of M, then $\omega(\Gamma(M / N))=\omega(\Gamma(M, N))$.
Proof. First we show that $I_{m+N}^{2} M \nsubseteq N$ for each $0 \neq m+N \in M / N$. Assume that $N=\oplus_{i \in A} M_{i}$ and $m=\left(m_{i}\right)_{i \in I} \in M \backslash N$. Then $I_{m+N}=$ $\bigcap_{i \notin A, m_{i}=0} \operatorname{ann}\left(\mathrm{M}_{\mathrm{i}}\right)$. Hence, $I_{m+N}=I_{m+N}^{2}$. Thus $I_{m+N}^{2} M \nsubseteq N$ since there is at least one $j \in I \backslash A$ such that $m_{j} \neq 0$.

Now, Corollary 3.2 implies that $\omega(\Gamma(M / N)) \leq \omega(\Gamma(M, N))$. Thus, it is enough to consider the case where $\omega(\Gamma(M / N))=d<\infty$. Assume that G is a complete subgraph of $\Gamma(M, N)$ with vertices $m_{1}, m_{2}, \cdots, m_{d+1}$, we provide a contradiction. Consider the subgraph G_{*} of $\Gamma(M / N)$ with vertices $m_{1}+N, \cdots, m_{d+1}+N$. By Corollary 3.2, G_{*} is a complete subgraph of $\Gamma(M, N)$. Thus $m_{j}+N=m_{k}+N$ for some $1 \leq j, k \leq d+1$ with $j \neq k$ since $\omega(\Gamma(M / N))=d$. We have $I_{m_{j}} I_{m_{k}} M \subseteq N$. Therefore, $R m_{j} \cap R m_{k} \subseteq N$ and so $I_{m_{j}+N} I_{m_{k}+N} M \subseteq N$. Hence, $I_{m_{j}+N}^{2} M \subseteq N$, that is a contradiction.

In the following theorem, we show that there is a relation between $\omega(\Gamma(M, N))$ and $\chi(\Gamma(M, N))$.

Theorem 3.4. Assume that $M=\bigoplus_{i \in I} M_{i}$, where M_{i} 's are non-isomorphic simple submodules of M and $N=\bigoplus_{i \in A} M_{i}$ is a submodule of M for some $A \subset I$. Then $\omega(\Gamma(M, N))=\chi(\Gamma(M, N))=|I|-|A|$.

Proof. Suppose that $I \backslash A=\{1, \cdots, n\}$ so $M_{1}, \cdots, M_{n} \nsubseteq N$. Let for $1 \leq k \leq$ $n-1$

$$
L^{k}=\{m \in M: m \text { has } k \text { nonzero components }\}
$$

and let for $1 \leq s \leq n$

$$
L_{s}^{1}=\left\{m \in L^{1}: \text { the } s^{\text {th }} \text { component of } m \text { is nonzero }\right\}
$$

If $m \in L_{s}^{1}$ and $m^{\prime} \in L_{t}^{1}$ for some $1 \leq s, t \leq n$ with $s \neq t$, then m and m^{\prime} are adjacent and so K^{n} is a subgraph of $\Gamma(M, N)$. Thus $\omega(\Gamma(M, N)) \geq n$. If $m, m^{\prime} \in L_{s}^{1}$ for some $1 \leq s \leq n$, then m, m^{\prime} are not adjacent because $\operatorname{ann}\left(M_{s}\right) \nsubseteq I_{m} I_{m^{\prime}}$ and so the elements of L_{s}^{1} have same color. On the other hand, if $x \in L^{t}$ with $t>1$, then there is not a complete subgraph K^{h} of $\Gamma(M, N)$ containing x, such that $h \geq n$. Thus $\omega(\Gamma(M, N))=n \leq \chi(\Gamma(M, N))$. Also, if $x \in L^{t}$ with $t>1$, then there is an s with $1 \leq s \leq n$ such that x is not
adjacent to each element of L_{s}^{1}. Thus the color of x is same as the elements of L_{s}^{1}. Thus $\chi(\Gamma(M, N))=n$.

The Kuartowski's Theorem states: A graph G is planar if and only if it contains no subgraph homeomorphic to K^{5} or $K^{3,3}$.

Theorem 3.5. Let N be a nonzero proper submodule of M such that N is not prime. Then $\Gamma(M, N)$ is not planar.

Proof. Assume that $M=\bigoplus_{i \in I} M_{i}$, where M_{i} 's are non-isomorphic simple submodules of M and $N=\bigoplus_{i \in A} M_{i}$ for some $A \subset I$. Let $I \backslash A=\{i, j\}$. Then $\Gamma(M, N)$ is a complete bipartite graph $K^{n, m}$, where $n=\left(\left|M_{i}\right|-1\right)\left(\prod_{k \in I-\{i, j\}}\left|M_{k}\right|\right)$ and $m=\left(\left|M_{j}\right|-1\right)\left(\prod_{k \in I-\{i, j\}}\left|M_{k}\right|\right)$. By hypotheses N is a nonzero and M_{i} 's are non-isomorphic, so we have $n, m \geq 3$. Hence $\Gamma(M, N)$ has a subgraph homeomorphic to $K^{3,3}$. The cases $|I \backslash A| \geq 3$ are similar to that of the case $|I \backslash A|=2$.

Theorem 3.6. A nonzero submodule N of M is prime if and only if $Z^{*}(M, N)=$ \emptyset.

Proof. Let $M=\bigoplus_{i \in I} M_{i}$, where M_{i} 's are non-isomorphic simple submodules of M and N is prime. Then $N=\bigoplus_{i \in I \backslash\{k\}} M_{i}$, for some $k \in I$. If $x \in$ $Z^{*}(M, N)$, then there exists a $y \in M \backslash N$ such that $I_{x} I_{y} M \subseteq N$. If $x \neq y$, then $R x \cap R y \subseteq N$, by Theorem 3.1. Thus either $M_{k} \nsubseteq R x$ or $M_{k} \nsubseteq R y$. Hence, either $R x \subseteq N$ or $R y \subseteq N$, a contradiction. Now, suppose that $x=y$ so by $I_{x}^{2} M \subseteq N$ and hypotheses $I_{x} M \subseteq N$. Thus $I_{x+n} I_{x} M \subseteq N$ for every $0 \neq n \in N$. By a similar argument, we have either $x \in N$ or $x+n \in N$, a contradiction. Hence, $Z^{*}(M, N)=\emptyset$.

Conversely, assume that $Z^{*}(M, N)=\emptyset$. Then $\operatorname{ann}(M / N)$ is prime ideal of R by Proposition 2.3 and there exists a $k \in I$ such that $\operatorname{ann}(M / N)=\operatorname{ann}\left(M_{k}\right)$. Hence, $N=\bigoplus_{i \in I \backslash\{k\}} M_{i}$ is a prime submodule of M.

A proper submodule N of M is called 2-absorbing if whenever $a, b \in R$, $m \in M$ and $a b m \in N$, then $a m \in N$ or $b m \in N$ or $a b \in \operatorname{ann}(M / N)$, see $[10,11]$. In the following results, we study the behavior of $\Gamma(M, N)$ whenever N is a 2 -absorbing submodule of M.

Theorem 3.7. A submodule N of M is 2-absorbing if and only if at most two components of M are zero in N.

Proof. Let $M=\bigoplus_{i \in I} M_{i}$, where M_{i} 's are non-isomorphic simple submodules of M. Suppose that N is a 2 -absorbing submodule of M and $N=\bigoplus_{i \in A} M_{i}$, where $A=I \backslash\{s, t, k\}$. Since for all $i \in I, \operatorname{ann}\left(M_{i}\right)$ is prime, there are $a \in$ $\operatorname{ann}\left(M_{s}\right) \backslash\left(\operatorname{ann}\left(M_{t}\right) \cup \operatorname{ann}\left(M_{k}\right)\right), b \in \operatorname{ann}\left(M_{t}\right) \backslash\left(\operatorname{ann}\left(M_{s}\right) \cup \operatorname{ann}\left(M_{k}\right)\right)$ and $c \in \bigcap_{j \in I \backslash(A-\{s, t\})} \operatorname{ann}\left(M_{j}\right) \backslash\left(\operatorname{ann}\left(M_{s}\right) \cup \operatorname{ann}\left(M_{t}\right)\right)$. Now, $a b c \in \operatorname{ann}(M / N)$ but $a b \notin \operatorname{ann}(M / N), a c \notin \operatorname{ann}(M / N)$ and $b c \notin \operatorname{ann}(M / N)$. This contradict with

Theorem 2.3 in [10]. Thus $|A| \geq|I|-2$ and at most two components of M are zero in N.

Conversely, if one component of M is zero in N, then N is a prime submodule of M. Suppose that $N=\bigoplus_{i \in A} M_{i}$, where $A=I \backslash\{i, j\}$. Thus $M_{i}, M_{j} \nsubseteq N$. Suppose that $a, b \in R,\left(m_{i}\right)_{i \in I}=m \in M \backslash N$ and $a b m \in N$. Then either $m_{i} \neq 0$ or $m_{j} \neq 0$. If $m_{i} \neq 0$ and $m_{j} \neq 0$, then $a b \in \operatorname{ann}\left(M_{i}\right) \cap \operatorname{ann}\left(M_{j}\right)=\operatorname{ann}(M / N)$. If $m_{i} \neq 0$ and $m_{j}=0$, then $a b \in \operatorname{ann}\left(M_{i}\right)$ and so either $a \in \operatorname{ann}\left(M_{i}\right)$ or $b \in \operatorname{ann}\left(M_{i}\right)$. Hence, $a m \in N$ or $b m \in N$. The case $m_{i}=0$ and $m_{j} \neq 0$, is similar to the previous case. Therefore, N is a 2 -absorbing submodule of M.

Theorem 3.8. N is a 2-absorbing submodule of M if and only if $Z^{*}(M, N)=\emptyset$ or $\Gamma(M, N)$ is a complete bipartite graph.
Proof. Let N be a 2-absorbing submodule of M. If N is prime, then $Z^{*}(M, N)=$ \emptyset, by Theorem 3.6. Now, assume that $N=\bigoplus_{i \in I \backslash\{j, k\}} M_{i}$ for some $j, k \in I$ and $\left(m_{i}\right)_{i \in I}=m \in M \backslash N$. Thus $I_{m}=\bigcap_{\left\{i \in I: m_{i}=0\right\}}$ ann $\left(\mathrm{M}_{\mathrm{i}}\right)$. If $m_{j} \neq 0$ and $m_{k} \neq 0$, then $m \notin Z(M, N)$. Let $V_{1}=\left\{\left(m_{i}\right)_{i \in I} \in M \backslash N: m_{j}=0\right\}$ and $V_{2}=\left\{\left(m_{i}\right)_{i \in I} \in M \backslash N: m_{k}=0\right\}$. Thus $m-m^{\prime}$ is an edge of $\Gamma(M, N)$ for every $m \in V_{1}$ and $m^{\prime} \in V_{2}$. Also, every vertices in V_{1} and V_{2} are not adjacent. Hence, $\Gamma(M, N)$ is a complete bipartite graph.

Now, suppose that $\Gamma(M, N)$ is a complete bipartite graph and N is not 2absorbing. By Theorem 3.7, there are at least three components M_{s}, M_{t}, M_{k} such that $M_{s}, M_{t}, M_{k} \nsubseteq N$. For $i=s, t, k$ let $v_{i}=\left(m_{i}\right)_{i \in I}$, where $m_{i} \neq 0$ and $m_{j}=0$ for all $j \neq i$. Then $v_{s}-v_{t}-v_{k}-v_{s}$ is a cycle in $\Gamma(M, N)$. Thus $\operatorname{gr}(\Gamma(\mathrm{M}, \mathrm{N}))=3$ and so $\Gamma(M, N)$ is not bipartite graph, by Theorem 1 of Sec. 1.2 in [5]. Hence, N is a 2 -absorbing submodule of M.

Example 3.9. Let $M=\mathbb{Z}_{2} \oplus \mathbb{Z}_{5} \oplus \mathbb{Z}_{7}$. Then every nonzero submodule N of M is 2-absorbing. Thus either $Z^{*}(M, N)=\emptyset$ or $\Gamma(M, N)$ is a complete bipartite graph. In particular, if $N=\mathbb{Z}_{7}$, then $\Gamma(M, N)=K^{7,28}$.

Acknowledgments

The author is thankful of referees for their valuable comments.

References

1. D. F. Anderson, R. Levy, J. Shapiro, The Zero-divisor Graphs von Neumann Reguler Rings and Boolean Algebras, J. Pure Appl. Algebra, 180, (2003), 221-241.
2. D. F. Anderson, P. S. Livingstone, The Zero-divisor Graph of a Commutative Ring, J. Algebra, 217, (1999), 434-447.
3. I. Beck, Coloring of Commutative Rings, J. Algebra, 116, (1988), 208-226.
4. M. Behboodi, Zero Divisor Graph for Modules over Commutative Rings, J. Commut. Algebra, 4, (2012), 175-197.
5. B. Bollobas, Graph Theory: An Introuduction Course, Springer, New-York, 1979.
6. G. Chartrand, Graphs as Mathmatical Models, Prindle, Boston, 1977.
7. R. Diestel, Graph Theory, Springer, New-York, 1997.
8. A. Haghany, M. D. Vedadi, Endoprime Modules, Acta Math. Hungarca, 106, (2002), 89-99.
9. S. B. Mulay, Cycles and Symmetries of Zero-divisor, Comm. Algebra, 30, (2002), 3533-3558.
10. Sh. Payrovi, S. Babaei, On 2-absorbing Submodules, Algebra Colloquium, 19, (2012), 913-920.
11. Sh. Payrovi, S. Babaei, On the 2-Absorbing Submodules, Iranian Journal of Mathematical Sciences and Informatics, 10(1), (2015), 131-137.
12. S. P. Redmond, An Ideal-based Zero-divisor Graph of a Commutative Rings, Comm. Algebra, 31, (2003), 4425-4443.
13. R. Wisbauer, Modules and algebras: Bimodule Structure and Group Action on Algebras, Pitman Mono 81, Addison-Wesley-Longman, Chicago, 1996.

[^0]: *Corresponding Author
 Received 08 September 2016; Accepted 18 December 2016
 © 2019 Academic Center for Education, Culture and Research TMU

